DNA nanostructure‐encoded fluorescent barcodes
نویسندگان
چکیده
منابع مشابه
Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA.
The identification and differentiation of a large number of distinct molecular species with high temporal and spatial resolution is a major challenge in biomedical science. Fluorescence microscopy is a powerful tool, but its multiplexing ability is limited by the number of spectrally distinguishable fluorophores. Here, we used (deoxy)ribonucleic acid (DNA)-origami technology to construct submic...
متن کاملDNA mini-barcodes.
Conventional DNA barcoding uses an approximately 650 bp DNA barcode of the mitochondrial gene COI for species identification in animal groups. Similar size fragments from chloroplast genes have been proposed as barcode markers for plants. While PCR amplification and sequencing of a 650 bp fragment is consistent in freshly collected and well-preserved specimens, it is difficult to obtain a full-...
متن کاملNetwork cloning using DNA barcodes
The ability to measure or manipulate network connectivity is the main challenge in the field of connectomics. Recently, a set of approaches has been developed that takes advantage of next generation DNA sequencing to scan connections between neurons into a set of DNA barcodes. Individual DNA sequences called markers represent single neurons, while pairs of markers, called barcodes contain infor...
متن کاملBiological Identifications Through DNA Barcodes
Although much biological research depends upon species diagnoses, taxonomic expertise is collapsing. We are convinced that the sole prospect for a sustainable identification capability lies in the construction of systems that employ DNA sequences as taxon ‘barcodes’. It was established previously that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioident...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Aggregate
سال: 2020
ISSN: 2692-4560,2692-4560
DOI: 10.1002/agt2.8